Tang, Hao

Bio

Hao is an Assistant Research Professor in the Department of Geographical Sciences at University of Maryland College Park, where he also received his PhD degree in 2015. Before joining UMD Hao completed his BS in GIS from Nanjing University (China). His primary interests focus on characterizing 3D dynamics of terrestrial ecosystems using different lidar remote sensing platforms. He is currently working on NASA's Global Ecosystem Dynamics Investigation (GEDI) mission as a member of the Science Team. He is also a recipient of NASA Earth and Space Science fellow (NESSF) and NASA New (Early Career) Investigator Program.

Journal articles

Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P., Qi, W., Silva, C., 2020. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 100002.

Rödig, E., Knapp, N., Fischer, R., Bohn, F., Dubayah, R., Tang. H, Huth A. (2019) From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications. 10, 5088.

Suzanne Marselis,  TangH., John Armston, Katharine Abernethy, Alfonso Alonso, Nicolas Barbier, Pulchérie Bissiengou, Kathryn Jeffery, David Kenfack, Nicolas Labrière … (2019) Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environmental Research Letters.

Tang, H., Armston, J.D., Hancock, S., Marselis, S.M., Goetz, S., Dubayah, R., (2019). Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment. 231.

Huang, W., Dolan, K., Swatantran, A., Johnson, K., Tang, H., O’Neill Dunne, J., Dubayah, R., Hurtt, G. (2019). High-resolution mapping of above ground biomass for forest carbon monitoring system in the tri-state region Maryland, Pennsylvania, Delaware, USA. Environmental Research Letters.

Hurtt, G., Zhao, M., Sahajpal, R., Armstrong, A., Birdsey, R., Campbell, E., Dolan, K., Dubayah, R., Fisk, J.P., Flanagan, S., Huang, C., Huang, W., Johnson, K., Lamb, R., Ma, L., Marks, R., O’Leary, D., O’Neil-Dunne, J., Swatantran, A., Tang, H., (2019). Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, USA. Environmental Research Letters. 045013.

Tang, H., Song, XP., Zhao, F., Strahler, A.H., Schaaf, C.L., Goetz, S., Huang, C., Hansen, M., Dubayah, R., (2019) Definition and measurement of tree cover: A comparative analysis of field-, lidar-and landsat-based tree cover estimations in the Sierra national forests, USA. Agricultural and Forest Meteorology. 268, 258-268.

Hancock, S., Armston, J., Hofton, M., Sun, X., Tang, H., Duncanson, L., Kellner, J., Dubayah, R. (2019) The GEDI Simulator: A LargeFootprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth and Space Science. 6(2), 294-310. (TOP CITED ARTICLE 2018-2019)

Qi, W., Lee, SK., Hancock, S., Luthcke, S., Tang, H., Armston, J., Dubayah, R., (2019). Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment. 221, 621–634.

Marselis, S.M., Tang, H., Armston, J.D., Calders, K., Labrière, N., Dubayah, R., (2018). Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: A case study in Lopé National Park, Gabon. Remote Sensing of Environment. 216, 626–634.

Tang, H., & Dubayah, R. (2017). Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences. 114(10), 2640-2644.

Tang, H., Swatantran, A., Barrett, T., DeCola, P., & Dubayah, R. (2016). Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar. Remote Sensing, 8(9), 771.

Brolly, M., Simard, M., Tang, H., Dubayah, R. O., & Fisk, J. P. (2016). A Lidar-Radar Framework to Assess the Impact of Vertical Forest Structure on Interferometric Coherence. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP(99), 1–12.

Swatantran, A., Tang, H., Barrett, T., DeCola, P., & Dubayah, R. (2016). Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar. Scientific Reports, 6, 28277.

Tang, H., Ganguly, S., Zhang, G., Hofton, M., Nelson, R., & Dubayah, R. (2016). Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States. Biogeosciences 13, 239-252

Huang, W., Swatantran, A., Johnson, K., Duncanson, L., Tang, H., O'Neil Dunne, J., Hurtt, G., & Dubayah, R. (2015). Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA. Carbon Balance and Management C7 - 19, 10, 1-16

Tang, H., Brolly, M., Zhao, F., Strahler, A.H., Schaaf, C.L., Ganguly, S., Zhang, G., & Dubayah, R. (2014a). Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 143, 131-141

Tang, H., Dubayah, R., Brolly, M., Ganguly, S., & Zhang, G. (2014b). Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat). Remote Sensing of Environment, 154, 8-18

Zhao, F., Yang, X.Y., Strahler, A.H., Schaaf, C.L., Yao, T., Wang, Z.S., Roman, M.O., Woodcock, C.E., Ni-Meister, W., Jupp, D.L.B., Lovell, J.L., Culvenor, D.S., Newnham, G.J., Tang, H., & Dubayah, R.O. (2013). A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system. Remote Sensing of Environment, 136, 330-341

Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D.B., & Blair, B. (2012). Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sensing of Environment, 124, 242-250

Degrees

  • Department of Geographical Sciences, University of Maryland - PhD

  • Department of Geographic Information System, Nanjing University - BS